Tecnología LED

Con el correr del tiempo esta tecnología se ha desarrollado y vuelto cada vez más eficaz. Actualmente se han incorporado nuevos materiales que han permitido crear leds de prácticamente todo el espectro visible de colores, ofreciendo al mismo tiempo una eficiencia lumínica que supera a la de las lámparas incandescentes.

Estos brillantes, eficientes y coloridos nuevos leds están expandiendo su dominio a un amplio rango de aplicaciones de iluminación. Si consideramos su particularidad de bajo consumo energético y la imbatible ventaja de su uso en señalamiento exterior (carteles de mensaje variables y señales de tránsito) tendremos que el futuro de estos pequeños dispositivos semiconductores es realmente muy promisorio.

+50% de ahorro de energía.*

Son reciclables.

50 mil horas de duración.

Resistentes a los golpes.


  Funcionamiento

¿Cómo están formados los LEDS?

Para responder a esta pregunta correctamente tendremos que empezar diciendo que el LED es un diodo que emite luz (Light emitting Diode) y que un diodo es un semiconductor y que los semiconductores están hechos fundamentalmente de silicio. Como veremos mas adelante los led están hechos de una gran gama de elementos de la tabla periódica, pero nos ocuparemos ahora de explicar el funcionamiento del diodo a través del comportamiento del Silicio, ya que este es el material fundamental y mas popular de la electrónica moderna.

Pero… ¿qué es el silicio?

El silicio es un elemento muy común en la naturaleza, tal es así que se encuentra en la arena de las playas y en los cristales de cuarzo. Si miramos donde se encuentra el Silicio (SI) en la tabla periódica de los elementos lo encontraremos con el numero atómico 14 y sus vecinos inmediatos son el Galio (Ga), Aluminio (Al), Boro (B), Carbono (C), Nitrógeno (N), Fósforo (P), Arsénico (As) y Germanio (Ge). Recuerden estos elementos porque forman parte de los distintos tipos de tecnologías de leds y son los que determinaran el color de emisión.

El carbono, el silicio y el galio poseen una propiedad única en su estructura electrónica, cada uno posee 4 electrones en su órbita externa lo que les permite combinar o compartir estos electrones con 4 átomos vecinos, formando así una malla cuadricular o estructura cristalina, de esta forma no quedan electrones libres como en el caso de los conductores que poseen electrones libres en su ultima orbita que pueden moverse a través de los átomos formando así una corriente eléctrica.

Por lo dicho, el silicio en su forma pura es básicamente un aislante. Podemos hacerlo conductor al mezclarlo con pequeñas cantidades de otros elementos, a este proceso se lo denomina “dopaje”.

¿Qué es el dopaje y qué efectos tiene en los led?

Hay dos tipos de dopaje:

Dopaje N: En este caso el silicio se dopa con Fósforo o Arsénico en pequeñas cantidades. El Fósforo y el Arsénico tienen 5 electrones en su orbita externa que terminan sobrando cuando se combina en una red de átomos de silicio. Este quinto electrón se encuentra libre para moverse, lo que permite que una corriente eléctrica fluya a través del Silicio. Se necesita solo una pequeña cantidad de dopaje o impurezas para lograr esta corriente, por ejemplo al agregar un átomo de impurezas por cada 108 (1000 millones) átomos de Silicio se incrementa la conductividad en un factor de 10. Los electrones tienen una carga negativa, por eso se llama dopaje tipo N.

Dopaje P: En este caso el silicio se dopa con Boro o Galio en pequeñas cantidades. El Boro y el Galio tienen 3 electrones en su orbita externa por lo que termina faltando un electrón cuando se combina en una red de átomos de Silicio. Este electrón faltante ocasiona que se formen huecos en la red. Estos huecos permiten que se circule una corriente a través del Silicio ya que ellos aceptan de muy buena gana ser “tapados” por un electrón de un átomo vecino, claro que esto provoca que se forme un hueco en el átomo que desprendió dicho electrón, este proceso se repite por lo que se forma una corriente de huecos a través de la red. Es de notar que en todos los caso lo único que se mueve fuera del átomo son los electrones, pero en este caso dicho movimiento provoca un efecto similar o equivalente al movimiento de huecos. Se necesita solo una pequeña cantidad de dopaje o impurezas para lograr esta corriente. Los agujeros tienen una carga positiva, por eso se llama dopaje tipo P

Tanto el Silicio dopado N como el Silicio dopado P tienen propiedades conductoras pero a decir de verdad no son muy buenos conductores de ahí el nombre de semiconductor. Por separado ambos semiconductores no dicen mucho, pero cuando se juntan producen efectos interesantes, especialmente entre la juntura de ambos.


  Análisis económico

Con bombilla 150 V Con pantalla LED 15 W
Lente de 300 mm
Energético 150 W x 24h x 365dias = 1314 KWCosto para 1 KW = $ 0,05 Total. $ 65,7 15 W x 24h x 365dias = 131,4 KWAhorro 90%Costo para 1 KW = $ 0,05 Total. $ 6,57Ahorro $ 59,13
Hipótesis de sistema con 8 semáforos vehiculares de 300 mm
$ 65,7 x 8 semáforos = $ 525,5 $ 6,57 x 8 semáforos = $ 52,5
Ahorro anual en el costo energético $ 473
Mantenimiento Los costos han sido deducidos por la media de los datos provistos por algunas empresas para el mantenimiento de sistemas semafóricos tradicionales.Se examina el reemplazo periódico de las bombillas, la mano de obra de dos personas, los costos de los equipos necesarios y por lo menos una intervención extraordinaria. Con un sistema semafórico a led, se puede considerar una sola intervención anual para la limpieza de las lentes externas:
Costo medio $269 Costo presunto $40,35 aprox.
Ahorro presunto anual en el costo de mantenimiento: $ 228,65

  Evolución del LED

Primeros pasos

El primer led comercialmente utilizable fue desarrollado en el año 1962, combinando Galio, Arsénico y Fósforo (GaAsP) con lo cual se consiguió un led rojo con una frecuencia de emisión de unos 650 nm con una intensidad relativamente baja, aproximadamente 10mcd @20mA, (mcd = milicandela, posteriormente explicaremos las unidades fotométricas y radiométricas utilizadas para determinar la intensidad lumínica de los leds ).

El siguiente desarrollo se basó en el uso del Galio en combinación con el Fósforo (GaP) con lo cual se consiguió una frecuencia de emisión del orden de los 700nm. A pesar de que se conseguía una eficiencia de conversión electrón- fotón o corriente-luz mas elevada que con el GaAsP, esta se producía a relativamente baja corriente. Un incremento en la corriente no generaba un aumento lineal en la luz emitida, sumado a esto se tenia que la frecuencia de emisión estaba muy cerca del infrarrojo, una zona en la cual el ojo no es muy sensible por lo que el led parecía tener bajo brillo a pesar de su superior desempeño de conversión.

Crecimiento y desarrollo

Los siguientes desarrollos, ya entrada la década del 70, introdujeron nuevos colores al espectro. Distinta proporción de materiales produjo distintos colores. Así se consiguieron colores verde y rojo utilizando GaP y ámbar, naranja y rojo de 630nm (el cual es muy visible) utilizando GaAsP. También se desarrollaron leds infrarrojos, los cuales se hicieron rápidamente populares en los controles remotos de los televisores y otros artefactos del hogar.

En la década del 80 un nuevo material entró en escena el GaAlAs Galio, Aluminio y Arsénico. Con la introducción de este material el mercado de los leds empezó a despegar ya que proveía una mayor performance sobre los leds desarrollados previamente. Su brillo era aproximadamente 10 veces superior y además se podía utilizar a elevadas corrientes lo que permitía utilizarlas en circuitos multiplexados con lo que se los podía utilizar en display y letreros de mensaje variable.

Sin embargo este material se caracteriza por tener un par de limitaciones, la primera y más evidente es que se conseguían solamente frecuencias del orden de los 660nm (rojo) y segundo que se degradaban más rápidamente en el tiempo que los otros materiales, efecto que se hace más notorio ante elevadas temperaturas y humedades.

Construcción del LED

Explicaremos un detalle de mucha importancia respecto a los leds y su construcción. Cuando se fabrica el led, se lo hace depositando por capas a modo de vapores, los distintos materiales que componen el led, estos materiales se depositan sobre una base o sustrato que influye en la dispersión de la luz. Los primeros leds de AlInGaP se depositaban sobre sustratos de GaAs el cual absorbe la luz innecesariamente.

Un adelanto en este campo fue reemplazar en un segundo paso el sustrato de GaAs por uno de GaP el cual es transparente, ayudando de esta forma a que mas luz sea emitida fuera del encapsulado. Por lo tanto este nuevo proceso dio origen al TS AlInGaP (Tranparent Substrate ) y los AlInGaP originales pasaron a denominarse AS AlInGaP (Absorbent Susbtrate). Luego este mismo proceso se utilizo para los led de GaAlAs dando origen al TS GaAlAs y al As GaAlAs. En ambos casos la Eficiencia luminosa se incrementaba típicamente en un factor de 2 pudiendo llegar en algunos casos a incrementarse en un factor de 10. Como efecto secundario de reemplazar el As por el TS se nota un pequeño viro al rojo en la frecuencia de emisión, generalmente menor a los 10nm.

Un arcoiris de LEDS

A final de los 90 se cerró el circulo sobre los colores del arco iris, cuando gracias a las tareas de investigación del Shuji Nakamura, investigador de Nichia, una pequeña empresa fabricante de leds de origen japonés, se llego al desarrollo del led azul, este led siempre había sido difícil de conseguir debido a su elevada energía de funcionamiento y relativamente baja sensibilidad del ojo a esa frecuencia (del orden de los 460 nm) Hoy en día coexisten varias técnicas diferentes para producir luz azul, una basada en el SiC Silicio – Carbono otra basada en el GaN Galio – Nitrógeno, otra basada en InGaN Indio-Galio-Nitrógeno sobre substrato de Zafiro y otra GaN sobre sustrato SiC. El compuesto GaN, inventado por Nakamura, es actualmente el mas utilizado. Otras técnicas como la de ZnSe Zinc – Selenio ha sido dejadas de lado y al parecer el SiC seguirá el mismo camino debido a su bajo rendimiento de conversión y elevada degradación con la temperatura.

Dado que el azul es un color primario, junto con el verde y el rojo, tenemos hoy en día la posibilidad de formar el blanco con la combinación de los tres y toda la gama de colores del espectro, esto permite que los display gigantes y carteles de mensajes variables full color se hagan cada día más habituales en nuestra vida cotidiana.

Es también posibles lograr otros colores con el mismo material GaN, como por ejemplo el verde azulado o turquesa, de una frecuencia del orden de los 505 nm. Este color es importante ya que es el utilizado para los semáforos y entra dentro de la norma IRAM 2442 Argentina y VTCSH parte 2 americana y otras. Su tono azulado lo hace visible para las personas daltónicas. El daltonismo es una enfermedad congénita que hace a quien lo padece ser parcialmente ciego a determinadas frecuencias de color, generalmente dentro de ellas esta la correspondiente al verde puro que tiene una frecuencia del orden de los 525 nm.

Otros colores también son posibles de conseguir como por ejemplo el púrpura, violeta o ultravioleta. Este ultimo es muy importante para la creación de una forma más eficiente de producir luz blanca que la mera combinación de los colores primarios, ya que añadiendo fósforo blanco dentro del encapsulado, este absorbe la radiación ultravioleta y emite frecuencia dentro de todo el espectro visible, logrando luz blanca en un proceso similar al que se produce en el interior de los tubos fluorescentes. A veces el fósforo posee una leve tonalidad amarillenta para contrarrestar el tono azulado de la luz del semiconductor.

 

El encapsulado de los LEDS

Es importante hacer notar que la calidad del encapsulado es un factor fundamental en la ecuación temporal. Los primeros desarrollos de resinas epoxi para el encapsulado poseían una no muy buena impermeabilidad ante la humedad. Sumado a esto, los primeros leds se fabricaban manualmente; el posicionamiento del sustrato y vertido de la resina era realizado por operarios y no por máquinas automáticas como hoy en día, por lo que la calidad del led era bastante variable y la vida útil mucho menor que la esperada.

Hoy en día esos problemas fueron superados y cada vez son mas las fábricas que certifican la norma ISO 9000 de calidad de proceso. Además últimamente es más común que las resinas posean inhibidores de rayos UVA y UVB, especialmente en aquellos leds destinado al uso en el exterior.

En los 90 apareció en el mercado tal vez el más éxitoso material para producir leds hasta la fecha el AlInGaP Aluminio, Indio, Galio y Fósforo. Las principales virtudes de este tetar compuesto son que se puede conseguir una gama de colores desde el rojo al amarillo cambiando la proporción de los materiales que lo componen y segundo, su vida útil es sensiblemente mayor, a la de sus predecesores, mientras que los primeros leds tenia una vida promedio efectiva de 40.000 horas los leds de AlInGaP podían mas de 100.000 horas aun en ambientes de elevada temperatura y humedad.

Rendimiento y vida útil del LED

Es de notar que muy difícilmente un led se queme, si puede ocurrir que se ponga en cortocircuito o que se abra como un fusible e incluso que explote si se le hace circular una elevada corriente, pero en condiciones normales de uso un led se degrada o sea que pierde luminosidad a una taza del 5 % anual. Cuando el led ha perdido el 50% de su brillo inicial, se dice que ha llegado al fin de su vida útil y eso es lo que queremos decir cuando hablamos de vida de un led. Un rápido calculo nos da que en una año hay 8760 horas por lo que podemos considerar que un LED de AlInGaP tiene una vida útil de mas de 10 años.

Como dijimos uno de factores fundamentales que atentan contra este numero es la temperatura, tanto la temperatura ambiente como la interna generada en el chip, por lo tanto luego nos referiremos a técnicas de diseño de circuito impreso para bajar la temperatura.

Diagrama de Cromaticidad

Luego de tantos materiales y frecuencias de ondas seria bueno resumir todo esto en una forma mas clara, es por ello en la tabla 1.1 se detallan los distintos frecuencias de emisión típica de los leds comercialmente disponibles y sus materiales correspondientes. Los datos técnicos fueron obtenidos de distintos fabricantes. Es de notar que la resolución del ojo es del orden de los 3 a 5 nm según el color de que se trate.

Para tener una idea aproximada de la relación entre la frecuencia expresada en nanómetros y su correspondencia con un color determinado es que a continuación se presenta un grafico simplificado del triangulo de Maxwell o Diagrama de Cromaticidad CIE (Fig.1.2). Cada color se puede expresar por sus coordenadas X e Y. Lo colores puros o saturados se encuentran en el exterior del triangulo y a medida que nos acercamos a su centro el color tiende al blanco. El centro de la zona blanca es el blanco puro y suele expresarse por medio de la temperatura de color, en grados Kelvin, de un cuerpo negro. Simplificando podemos decir que un cuerpo negro al calentarse empieza a emitir ondas infrarrojas, al subir la temperatura empieza a tomar un color rojizo, esto es en los 770 nm, al seguir elevándose la temperatura, el color se torna anaranjado, amarillento y finalmente blanco, describiendo una parábola desde el extremo inferior derecho hacia el centro del triangulo. Por lo tanto cada color por donde pasa dicha parabola puede ser representado por una temperatura equivalente. El centro del triangulo (blanco puro) se corresponde con una temperatura de 6500 K. El tono de los leds blanco viene expresado precisamente en grados kelvin. Una temperatura superior significa un color de emisión blanco – azulado.

Fig. 1.2 Diagrama de cromaticidad

Fig. 1.2 Diagrama de cromaticidad